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ABSTRACT 

Building energy modeling is a field that can be 

computationally intensive, especially for large 

parametric studies that require simulating many 

alternate models.  In the past, these types of studies have 

been limited to research institutions and advanced users 

who had the required computational resources available.  

In recent years, cloud computing services have come to 

offer a reliable platform in which relatively inexpensive 

computing power can be purchased and used as needed 

without a substantial capital investment.  These services 

are gaining ground quickly because they are, for many 

companies, more cost effective than building and 

maintaining computing power in-house.  OpenStudio 

has developed a workflow that allows energy modelers 

to create and run a customized parametric analysis using 

commercially available cloud computing services.  This 

workflow will enable anyone to perform powerful 

parametric studies in a reasonable time for a relatively 

low cost.  This paper demonstrates the workflow in an 

automated calibration application. 

INTRODUCTION 

Building energy modeling tools span a wide range of 

computational requirements.  The most basic tools are 

spreadsheets that use very low order models of the 

building to simulate energy use for specific equipment 

or the whole building.  More advanced whole-building 

simulation tools attempt to take in information about 

the entire building upon which they predict energy use.  

ASHRAE Standard 140  (ASHRAE 2011) provides a 

method for validating whole building energy modeling 

tools.  Of these validated tools, EnergyPlus, developed 

by DOE, is currently one of the most advanced  

(Crawley et al. 2005). However, with more capability 

comes more computational requirements.  Historically, 

this has meant that, in addition to assembling the 

complex set of necessary input data, using EnergyPlus 

to perform parametric studies required large 

computational resources not available to the average 

energy modeler. 

One approach to this problem in the past was for 

research institutions, with access to large computational 

resources, to perform parametric studies and then 

publish the results in ways that average users could 

access  (ASHRAE),  (Griffith et al. 2007),  (DOE 2012),  

(Roth et al. 2012), (NREL 2013),  (DOE 2013).  This 

approach is still valid and useful for many applications. 

However, a user’s building, modeling assumptions, and 

design considerations are never exactly the same as in 

the pre-packaged parametric study.  Also, some users 

want to study how the results of an analysis might 

change for their specific building, their modeling 

assumptions, and their design considerations but lack 

the framework and computational resources to do so.  

This is especially true when trying to use algorithms for 

automated calibration of energy models as no two 

buildings are operated identically.  With these 

computational resources now available, projects such as 

jEPlus  (Zhang & Korolija 2010) and OpenStudio have 

begun to address this need. 

The OpenStudio workflow for parametric studies is 

shown in Figure 1.  In this workflow, a user is able to 

create an OpenStudio building energy model specific to 

their project using a number of available frontends.  The 

user is then able to search for and download 

OpenStudio measures  (Hale et al. 2012) specific to 

their needs from the Building Component Library 

(BCL)  (Fleming et al. 2012).  OpenStudio measures are 

small Ruby programs that take user inputs and then 

modify an OpenStudio model in a specific and 

replicable way.  If a suitable measure cannot be found, 

the user can write their own measure and test it using 
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the OpenStudio Parametric Analysis Tool (PAT).  The 

user can apply combinations of measures using their 

own custom assumptions about price and performance 

using PAT and test that these measures work correctly 

with their custom building model.   

 

Figure 1 OpenStudio Parametric Workflow 

 

After the user is satisfied that the measures are working 

correctly in PAT, they may choose to run additional 

design alternatives on the cloud directly through the 

PAT interface  (Hale et al. 2014).  However, in this case 

the user must construct all of the design alternatives to 

be run by hand, which is tedious, time consuming, and 

error-prone.  As an alternative, the user may choose to 

export the project to a spreadsheet format for a more 

automated, large-scale, cloud-based analysis.  This path 

is the focus of this paper.  The spreadsheet allows the 

user to specify detailed information about the analysis 

that is not available in the PAT interface.  Once this 

spreadsheet is completed, the user is able to run a script 

that parses the spreadsheet, starts cloud resources, 

uploads information, and begins the analysis.  While the 

analysis is running in the cloud, the user may monitor 

progress and interact with results via a web interface 

that is embedded in the OpenStudio Server.  The web 

interface also allows the user to download individual 

models and results in various formats for further 

analysis.  The OpenStudio SDKs with which the 

spreadsheet interacts are all available as open source 

projects.  This allows software developers to perform all 

of these steps programatically to create custom 

parametric building energy modeling applications. 

The remainder of this paper describes using this 

workflow to set up and run an automated energy model 

calibration to monthly measured utility data.  In this 

example, the seed model was developed using the 

simuwatt Energy Auditor
®

 software  (Macumber et al. 

2014).  This software allows an energy auditor to 

perform an energy audit of a commercial building using 

a tablet based workflow.  The tool generates an initial 

OpenStudio model based on the audit data which is 

then calibrated to actual monthly utility data.  However, 

any OpenStudio model could be used as the input.  In 

this example, the measures will be selected for their 

ability to tune uncertain parameters of the model.  

However, measures used to model improved energy 

performance could be chosen for an optimization study.   

The model used in this work was the same one used for 

a case study of a manual calibration process in (Hale et 

al. 2014).  Ideally, the automated process should yield 

calibration parameters similiar to the carefully 

considered manual process, but at a lower cost.  

However, certain parameters were tuned by hand using 

graphical user interfaces instead of measures during the 

manual calibration.  As reported in (Hale et al. 2014) 

the parameters that were manually changed were to 

adjust lighting and equipment schedules, hard size fans, 

and implement supply air temperature reset. Measures 

could have been written to achieve these same model 

changes.  However, five parameters could already be 

manipulated by measures and only 12 monthly electric 

data points.  To avoid overfitting, we used only the 

measures that were already available and did not 

consider parameters that were previously manipulated 

by hand, resulting in a more automated process. 

SEED MODEL 

The building considered in this study is a 7,560-m
2 

(81,400-ft
2
) office building at Tyndall Air Force Base in 

Panama City, FL.  The building is all electric and uses a 

chilled water variable air volume system with electric 

reheat for space conditioning. The occupancy is 
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primarily office space with small areas that include a 

courtroom, restrooms, conference rooms, a health clinic, 

and mechanical space. The building was constructed in 

1988, and since has had many space use changes, as 

well as several wall demolition/construction projects 

that did not include HVAC redesign. The building has 

not been commissioned recently, and occupants 

complained of hot and cold spots. 

An initial OpenStudio model was developed using the 

simuwatt Energy Auditor software tool (Macumber 

2014).  This model is shown rendered in the 

OpenStudio SketchUp plug-in in Figure 2.  As 

described in (Guglielmetti et al. 2011), the OpenStudio 

SketchUp plug-in can be used to visualize and develop 

geometry for building energy modeling. 

 
Figure 2 Initial Building Model Geometry 

 

As described in (Weaver et al. 2012) details about 

schedules, constructions, HVAC, and other energy 

modeling content can be modified using the OpenStudio 

application.  An HVAC system belonging to the initial 

OpenStudio model is shown as rendered by the 

OpenStudio application in Figure 3. 

 

 
Figure 3 Initial Building Model HVAC 

 

The simuwatt Energy Auditor tool allows for entry of 

actual monthly energy use.  This information is 

automatically added to the initial OpenStudio energy 

model.  When the energy model is simulated using 

EnergyPlus in the OpenStudio application, a calibration 

report comparing the modeled energy use with actual 

energy use is automatically created, shown in Figure 4.  

 

 
Figure 4 Initial Model Calibration Report 

 

This calibration report computes the normalized mean 

bias error (NMBE) and the coefficient of variation of 

the root mean squared error CV(RMSE) between the 

model and actual energy use.  These metrics are 

compared to the ASHRAE Guideline 14 (ASHRAE 

2002) requirements that NMBE must be ± 5% and the 

CV(RSME) must be ≤ 15%.  As shown in Figure 4, 

NMBE of the initial model was -66.89% and 

CV(RMSE) was 64.90%.  As these metrics are outside 

the acceptable limits in ASHRAE Guideline 14, 

uncertain model parameters must be tuned until the 

modeled energy use better matches actual data. 

 

USING MEASURES WITH PAT 

After importing the initial OpenStudio model into PAT, 

the first step in the calibration process is to identify 

uncertain parameters of the initial model.  Because an 

on-site audit of the building was conducted, lighting 

and equipment counts, HVAC system types, and 

constructions are well known.  However, other 

parameters such as infiltration, operational schedules, 

and actual system efficiencies are not known with 

certainty.  As shown in Figure 5, PAT allows the user to 

search for measures on the BCL, which vary these 

uncertain parameters to improve model predictions.  As 

noted in (Hale et al. 2014), good engineering judgement 

must be used when selecting the measures and 

calibration parameters to use for any given building. 

 

In this example, suitable measures for varying uncertain 

parameters were already available from the previous 

manual calibration work (Hale et al. 2014).  Although 

other calibration parameters of interest, such as 

infiltration rates, are available as measures on the BCL, 

this work was restricted to the measures from the 

previous manual calibration in order to compare the 
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manual to the automated calibration process.  The 

existing measures were added to the measure library in 

PAT and then dragged into the simulation workflow, 

shown in Figure 6. 

 

 
Figure 5 Online BCL Interface 

 

 
Figure 6 Configuring Measure Parameters in PAT 

 

Clicking on a measure allows the user to enter custom 

values for the measure’s arguments.  Multiple instances 

of the same measure may be configured with different 

input values for testing the measure across a range of 

inputs.  It is important to test each measure at the 

nominal and extreme values of the variable space.  If 

each measure is found to work correctly for these 

values, the user may assume that simulations will run 

cleanly on a high percentage of the interior of the 

variable space. 

 

 
Figure 7 Simulation Details in PAT 

 

After individual measures are configured, design 

alternatives can be constructed by applying different 

combinations of measures to the input model.  Each 

design alternative is then simulated.  Each measure may 

issue errors, warnings, and informational messages 

which are shown directly in the PAT user interface as 

shown in Figure 7.  Each resulting OpenStudio model 

and detailed results may also be inspected using the 

OpenStudio graphical user interfaces to ensure that the 

measures were applied correctly.  The following 

parameters, with initial model value, were investigated 

over the ranges shown in Table 1. 

 

Table 1 Parameter Ranges 

PARAMETER INITIAL MIN MAX 

Ground temperature (C) 18 17 20 

Cooling set point (C) 22.2 22.2 26.2 

Reduce lighting power (%) 0.0 0.0 40.0 

Reduce equipment power (%) 0.0 0.0 40.0 

Fan static pressure (in. H2O) 2.0 2.0 4.0 

 

Testing measures with PAT in this manner is important 

before initiating large cloud analyses to avoid spending 

money on cloud resources, only to find bad simulation 

results because of erroneous measures or measure 

arguments.  Once all the measures are tested with an 

expected range of input arguments locally, the user can 

be more confident that cloud-based simulations will 

provide high-value results.  Once PAT has been used in 

this manner, the user can quickly export the project to a 

spreadsheet format better suited to describe a range of 

large-scale simulations to be performed in the cloud. 

PROBLEM DEFINITION 

The analysis capabilities of the OpenStudio platform are 

far more extensive than what can be quickly exposed in 

a polished user interface.  One expedient method for 
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exposing the full functionality is to use a spreadsheet 

input format in conjunction with scripts that leverage 

the OpenStudio Ruby bindings.  The spreadsheet 

interface allows the user to enter the required 

information using familiar tools while allowing the 

interface to be updated easily as new features are added 

or refined.  At the time of writing, an example 

spreadsheet, installation, and configuration instructions 

are available at https://github.com/NREL/OpenStudio-

analysis-spreadsheet, although future releases of 

OpenStudio will make installation more seamless. 

 

Exporting a project from PAT creates a default 

spreadsheet with the baseline model and measures used 

in the PAT analysis.  The user may then add information 

to the spreadsheet to define measure arguments as 

variables with associated distributions and ranges. 

 

Sampling and optimization algorithms with associated 

objective functions are specified in the spreadsheet.  

Several algorithms are currently available for 

optimization including the evolutionary multi-objective 

optimization algorithms NSGA2 (Nondominated 

Sorting Genetic Algorithm 2)  (Deb et al. 2002) and 

SPEA2 (Strength Pareto Evolutionary Algorithm 2)  

(Zitzler et al. 2001), the single-objective optimization 

algorithms GENOUD (GENetic Optimized Using 

Derivatives)  (Mebane & Sekhon 2011), DEoptim  

(Mullen et al. 2011), and the gradient based L-BFGS-B  

(Byrd et al. 1995). The workflow also supports several 

sampling algorithms for continuous and discrete 

variables including, LHS (Latin Hypercube Sampling) 

(Stein 1987), pure random sampling and sampling based 

on Sobol sequences (Burhenne et al. 2011).  In this 

example, we want to minimize the difference between 

actual and model energy use.  Therefore, we selected the 

GENOUD optimization algorithm and an objective 

function that corresponds to CV(RMSE). 

 

Objective functions may be specified flexibly using 

combinations of model values, simulation outputs, and 

additional data.  PAT exports a list of machine-readable 

attributes that are generated by reporting measures in 

the simulation workflow.  Any of these outputs may be 

chosen as an objective function for the algorithm.  In 

addition, any L
p 

norm may be applied to output 

variables when defining objective functions for 

optimization problems (Rudin 1991). Standard 

reporting measures are available, but users may also 

create customized measures to report specific values of 

interest. 

LAUNCH CLOUD 

After the parametric problem has been defined in the 

spreadsheet the user is ready to launch cloud instances.  

Amazon’s Elastic Compute Cloud (EC2) service is the 

first cloud service to be supported by OpenStudio.  To 

use this service, the user must register for an EC2 

account on Amazon and provide a payment method.  

The user then copies credentials for their EC2 account 

onto their computer to authorize it to launch cloud 

resources.  The number and type of cloud resources may 

be set in the spreadsheet based on analysis 

requirements.  Once configured per the instructions 

provided in the above github link, the user types a single 

rake command to parse the spreadsheet, stand up the 

EC2 cluster, and upload the problem for analysis.  The 

script also returns a URL that the user can enter into a 

web browser to monitor progress and interact with 

results as they become available, Figure 8.   

 

 
Figure 8 OpenStudio Cloud Management Console 

 

The user may monitor and terminate all their EC2 

resources through Amazon’s EC2 interface as well. 

Monitoring the cluster is important to prevent unwanted 

charges for unnecessary cloud resources, and a number 

of web and mobile interfaces are available to facilitate 

this task.  All cluster nodes remain available for analysis 

(and billing) until they are explicitly halted.  Halting the 

server also removes the cloud management console and 

all data that has not been downloaded or pushed to 

longer term, low cost storage. Although OpenStudio is 

easily configured to use EC2, advanced users may set up 

distributed analyses on other cloud services or local 

virtual machines and clusters. 

OPENSTUDIO SERVER 

Each cluster includes one server and multiple workers 

depending upon the spreadsheet configuration, Figure 9.  

Each node is automatically provisioned with Amazon 

Machine Images containing the resources required to 

perform a distributed analysis. 
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Figure 9 OpenStudio Distributed Analysis Architecture 

 

The OpenStudio server cloud management console 

provides a significant amount of built-in functionality.  

It enables the user to browse multiple analyses that may 

have been performed by the cluster as well as individual 

points within an analysis.  Point reports include the 

standard EnergyPlus reports along with OpenStudio 

logs describing outcomes from the application of 

individual measures and other useful diagnostic 

information.  The server also provides summaries of 

input variable distributes for sampling problems 

including distribution histograms associated with 

measure inputs.  A number of visualizations are also 

available to assist in review of large-scale analysis 

results.  One useful visualization is the parallel 

coordinate plot shown in Figure 10. 

  

 

Figure 10 Parallel Coordinate Plot Used to Explore an 

OpenStudio Analysis 

This interactive plot shows the connections between 

multiple measure variables and key outcomes such as 

energy use intensity or life cycle cost.  The columns can 

be dynamically reordered, and the user can graphically 

apply filters to the data to focus on, for example, only 

those solutions that produce ranges of EUI and cost.  

Parallel coordinate plots can provide rapid insight into 

the myriad interactions taking place in a complex 

analysis and are valuable for identifying the most 

sensitive parameters in a model. 

The calibration problem described earlier in the paper 

provides an illustrative example of using the distributed 

optimization framework and visualizations. 

RESULTS 

The automated calibration was run on a cluster of 24 

CPUs.  A total of 241 simulations were run over 6 

generations taking a total of 13 hours.  The solution was 

found after 4 generations; however, 2 extra generations 

were run to ensure convergence.  In addition, gradient 

calculations were done after the 2
nd

 generation.  Turning 

off these features of the algorithm would have reduced 

simulation time by approximately 50%.  In addition, 

simulation time could have been reduced by purchasing 

additional computing power (at an additional cost).  The 

average simulation runtime was around 26 minutes for 

this complicated model. It is estimated that the manual 

tasks of setting up the problem, testing measures, and 

analyzing the results took about one day in total.  The 

GENOUD algorithm was selected with parameters: 

 

Table 2 Algorithm Parameters 

PARAMETER VALUE 

Population Size 24 

Generations 6 

solutionTolerance 0.01 

waitGenerations 2 

pPower 2 

Bfgsburnin 2 

 

The algorithm found a family of model parameters that 

satisfied the ASHRAE Guideline 14 recommendations.  

Those parameters are shown in Figure 11. 
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Figure 11 Parameters Satisfying ASHRAE Guideline 

14 

 

The final parameter values found by the optimization 

algorithm are reported along with those found during 

the manual calibration in Table 3. 

 

Table 3 Final Parameter Values 

PARAMETER MANUAL 

CALIBRATION 

AUTOMATED 

CALIBRATION 

Ground 

temperature (C) 

19.9 19.83 

Cooling set point 

(C) 

24.4 26.19 

Reduce lighting 

power (%) 

01 28.25 

Reduce 

equipment power 

(%) 

40 37.98 

Fan static 

pressure (in. H2O) 

3.5 2.43 

NMBE -1.35%  0.09% 

CV(RMSE) 7.61% 8.43% 

 

As shown in Table 33, NMBE of the final model was 

0.09% and CV(RMSE) was 8.43%.  In order to compare 

with the metrics from (Hale et al. 2014) the five degrees 

of freedom of the calibration problem were not included 

in calculation of these metrics.  However, considering 

the five degrees of freedom when calibrating against 12 

data points gives NMBE of the final model as 0.17% 

                                                           
1
 Lighting schedules were manually modified using the 

OpenStudio Application. 

and CV(RMSE) was 11.92%. These metrics are still 

within the ASHRAE Guideline 14 recommendations. 

 

 
Figure 12 Final Model Calibration Report 

 

CONCLUSION 

The advent of commercial cloud computing services 

gives users access to previously unavailable computing 

resources for building energy modeling.  These 

resources allow average users to perform large 

parametric studies customized to their specific 

buildings, performance and cost assumptions, and 

design considerations.  The OpenStudio parametric 

workflow described in this paper provides a convenient 

means for users to perform these types of studies.  The 

workflow was successfully demonstrated for an 

automated calibration application.  However, it can be 

used for design optimization or sensitivity analysis 

applications as well. 

FUTURE WORK 

The OpenStudio parametric workflow described in this 

paper is functional and useful for a large number of 

applications, including automated calibration.  

However, there are many improvements that could 

increase the usability and utility for the user: 

 

 Improve the PAT to spreadsheet export 

 Support more options for cloud resources  

 Add support for additional algorithms  

 Add more measures for calibration, including 

hard sizing measures 

 Add degrees of freedom as an input to the 

calibration reporting measure for calculating 

NMBE and CV(RMSE) 

 Add additional calculations and visualizations 

on the server (e.g., sensitivity heat maps) 

 Automate cloud launch from spreadsheet  

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission 
in either print or digital form is not permitted without ASHRAE’s prior written permission.

93



   

 

 Use metrics, such as Akaike Information 

Criterion (AIC), for comparing calibrations 

using different parameter sets 
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